
www.manaraa.com

S
aling e-Commer
e SitesCristiana Amza, Alan L. Cox, Willy ZwaenepoelDepartment of Computer S
ien
e, Ri
e Universityfamza, al
, willyg�
s.ri
e.eduAbstra
tWe investigate how an e-
ommer
e site 
an be s
aled up from a single ma
hine running aWeb server and a database to a 
luster of Web server ma
hines and database engine ma
hines.In order to redu
e development, maintenan
e, and installation 
osts, we avoid modi�
ations toboth the Web server and the database engine, and we repli
ate the database on all databasema
hines. All load balan
ing and s
heduling de
isions are implemented in a separate dispat
her.We �nd that su
h an ar
hite
ture s
ales well for the 
ommon e-
ommer
e workload of theTPC-W ben
hmark, provided that suitable load balan
ing and s
heduling strategies are inpla
e. Key among these strategies is asyn
hronous s
heduling, in whi
h writes 
omplete andare returned to the user as soon as a single instan
e of the write 
ompletes at one of thedatabase engines. The a
tual 
hoi
e of load balan
ing strategy is less important. In parti
ularlo
ality-based load balan
ing poli
ies, found very pro�table for stati
 Web workloads, o�er littleadvantage.1 Introdu
tionE-
ommer
e sites 
ommonly 
onsist of a front-end Web server and a ba
k-end database (See Fig-ure 1). The (dynami
) 
ontent of the site is stored in the database. A number of s
ripts providea

ess to that 
ontent. The 
lient sends an HTTP request to the web server 
ontaining the URLof the s
ript and some parameters. The Web server exe
utes the s
ript, whi
h issues a number ofSQL queries to the database and formats the results as an HTML page. This page is then returnedto the 
lient as an HTTP response.In small sites the Web server front-end and the database run on the same ma
hine, whi
h maybe
ome a bottlene
k. In this paper we study how to s
ale up su
h e-
ommer
e sites by using 
lusters.The simplest attempt to s
aling is to run the Web server and the database on a separate ma
hine.Beyond that, multiple ma
hines may be used for ea
h. We impose the 
onstraint that the Webserver, the database engine, and the s
ripts used for a

essing the dynami
 
ontent must remainthe same as for the single-ma
hine 
ase. We re
ognize that additional performan
e enhan
ementsmay be available if this 
onstraint is lifted, but we argue that it is essential for transparent s
alingof e-
ommer
e sites without undue development or administration.
MySQL

Database

HTML page

HTTP request

Response

Query

Web server

Apache
PHP modFigure 1: Common E-
ommer
e Site Ar
hite
ture1



www.manaraa.com

Subje
t to this 
onstraint, we investigate issues su
h as: Should additional ma
hines be devotedto Web servers or databases? What load balan
ing and s
heduling poli
ies should be used fors
aling ?Mu
h re
ent work in s
aling web servers has fo
used on load balan
ing for stati
 
ontent [15,19, 4℄. Content repli
ation and lo
ality-aware load distribution [15℄ with simple load measuressu
h as the number of 
onne
tions were shown to produ
e good s
aling behavior. We show thate-
ommer
e sites 
an also be made to s
ale by means of 
ontent repli
ation, but that di�erentload balan
ing and s
heduling te
hniques are ne
essary. Intuitively, the need for di�erent loadbalan
ing and s
heduling te
hniques arises from the basi
 di�eren
es between stati
 and dynami

ontent. The latter are typi
ally more CPU-intensive, a

ess a small number of tables through asmall number of s
ripts, and, above all, 
ontain writes.We fo
us on read-one, write-all repli
ation s
hemes. Read-only queries are sent a

ording to aload balan
ing s
heme, while the exe
ution of write queries is repli
ated on all ma
hines. We preferthis approa
h over data partitioning approa
hes [9, 3℄, be
ause it is simpler, and, in parti
ular,be
ause it leaves the s
ripts un
hanged. We have implemented and evaluated a number of loadbalan
ing and s
heduling poli
ies spe
i�
ally designed for the 
hara
teristi
s of e-
ommer
e sites.Our experimental platform 
onsists of a 
luster of AMD Athlon 800Mhz pro
essor PCs 
on-ne
ted by Fast Ethernet and running FreeBSD. Our largest experimental setup in
ludes 8 databaseserver ma
hines. We run three popular open sour
e software pa
kages - the Apa
he web server [1℄,the MySQL database server [13℄, and the PHP web-s
ripting/appli
ation development language [16℄(See Figure 1). This environment has be
ome a de fa
to standard, at least in the Unix world. Themost re
ent Net
raft survey [14℄ showed 63% of all Web sites running Apa
he. About 40% of thesesites had the PHP module 
ompiled in. We use the TPC-W ben
hmark [18℄ to evaluate variousload balan
ing and s
heduling poli
ies. The TPC-W ben
hmark models an e-
ommer
e site. Itspe
i�es the data of the site and the possible intera
tions with the data. It has three workloadmixes. The shopping mix is meant to be the most representative. The browsing mix re
e
ts aread-heavy workload and the ordering mix a write-heavy workload.Our main 
on
lusions are:1. With appropriate load balan
ing and s
heduling te
hniques, the TPC-W ben
hmark s
aleswell at least up to 8 ma
hines for the browsing and the (
ommon) shopping workloads. Theordering workload s
ales well up to 4 ma
hines but then 
attens out.2. S
heduling strategies that optimize syn
hronization laten
y, su
h as asyn
hronous repli
ationhave the most bene�
ial impa
t.3. Optimizing for lo
ality has almost no impa
t.The remainder of this paper is stru
tured as follows. Se
tion 2 des
ribes the s
alable 
lusterar
hite
ture and motivates our use of repli
ation. Se
tion 3 des
ribes the load balan
ing te
hniques,and Se
tion 4 des
ribes the s
heduling te
hniques explored in the paper. We experimentally in-vestigate how the di�erent load balan
ing and s
heduling te
hniques a�e
t s
aling in Se
tion 8.Se
tion 9 dis
usses related work. Se
tion 10 
on
ludes the paper.2 Cluster Ar
hite
tureWe 
onsider 
lusters of 
ommodity hardware 
omponents, i.e., PCs, LANs, and an L4 swit
h.2



www.manaraa.com

L-4 Switch

Web servers Database engines

Dispatcher

Figure 2: Cluster Ar
hite
ture Design2.1 HardwareOur 
luster-based server ar
hite
ture primarily 
onsists of a set of Web-server front-end nodes anda set of database engine ba
k-end nodes (see �gure 2). This ar
hite
ture allows us to deal withbottlene
ks both in the Web server front-ends and in the database ba
k-ends. In general, we havefound that for e-
ommer
e workloads the database ba
k-ends be
ome the bottlene
k before theWeb server front-ends (See Se
tion 8.1). With enough ba
k-ends, however, there is inevitably apoint where a single front-end be
omes the limiting fa
tor, so our ar
hite
ture allows for multiplefront-ends.When more than one front-end is present, an L4 swit
h and a dispat
her node are also in
luded.The use of an L4 swit
h makes the distributed nature of the server transparent to the 
lients. Weassume that the L4 swit
h simply performs a round-robin distribution of in
oming requests amongWeb server front-ends. In our experien
e, this leads to adequate load distribution among thefront-ends, and there appears to be little gain to be expe
ted from any more sophisti
ated strategy.The dispat
her implements the load balan
ing and s
heduling of queries 
oming from the Webserver front-ends and going to the database ba
k-ends. If there is only a single front-end, thenthis fun
tionality 
an be implemented on the front-end node. To the Web servers, the dispat
herlooks like a database engine. The web server sends it queries and re
eives responses as before.Likewise, the database engines intera
t with the dispat
her as if it were a regular Web server. As aresult, we 
an use any o�-the-shelf Web server (e.g., Apa
he) and any o�-the-shelf database (e.g.,MySQL) without modi�
ation. The single dispat
her potentially introdu
es a s
aling bottlene
k.We have not found that to be the 
ase for the number of ma
hines we 
onsidered. We have alsoexperimented with a primary-ba
kup Dispat
her implementation (see se
tion 6).2.2 Repli
ationWe repli
ate the entire database on ea
h of the database engines. This strategy allows a site to growin
rementally, by simply repli
ating the database on the new ma
hine, and updating the dispat
herwith the identity of the new ma
hine. There is no need for a re-organization of the database.Traditionally, database load balan
ing has involved de
lustering (data partitioning a
ross the
luster) [9, 3℄. By using this shared-nothing model, 
lustered database systems have avoided 
on-sisten
y maintenan
e overheads. On the downside, it requires either expert administrators fordatabase 
on�guration and re-
on�guration, or rather 
omplex optimizers to minimize the datamovement between ma
hines [7℄.Repli
ation brings with it the 
ost of repli
ating the exe
ution of update queries for maintaining3



www.manaraa.com

the table repli
as 
onsistent. Fortunately, e-
ommer
e queries that update the database are usuallylightweight 
ompared to read-only requests (See se
tion 7). For instan
e, typi
ally only the re
ordpertaining to a parti
ular 
ustomer or produ
t is updated, while any given 
ustomer may browsethrough the whole produ
t database. Repli
ation also brings with it the need for syn
hronizationfor bringing all repli
as up-to-date. We address these issues through our s
heduling algorithms inSe
tion 4.2.3 OperationThe Web server re
eives in
oming 
lient requests and exe
utes the 
orresponding s
ripts, as before.The queries, however, are sent to the dispat
her instead of to the database. The dispat
her parsesea
h in
oming query to determine its type (read-only or write) and the tables a

essed. Subse-quently, read-only (SELECT) queries are sent to only one database ma
hine a

ording to the loadbalan
ing s
heme in use, while the exe
ution of write queries (INSERT, UPDATE, DELETE) isrepli
ated on all ma
hines. We also support transa
tion isolation. The transa
tion delimiters aretreated like write-type queries (i.e., their exe
ution is repli
ated on all ma
hines). The databaseexe
utes the queries, as before, and sends the results to the dispat
her. The dispat
her updates itsstate and forwards the results to the Web server.3 Load Balan
ing Strategies for Read-Only Queries3.1 Weighted Round Robin S
hemesWeighted round-robin is a 
ommon load balan
ing s
heme in stati
-
ontent 
luster servers [11, 8℄.The in
oming requests are distributed in round-robin fashion, weighted by an estimate of the loadon the di�erent ba
k-ends.We 
ompare two weighted round robin s
hemes with di�erent load measures:1. Shortest Queue First (SQF) uses the number of outstanding queries to a parti
ular ba
k-end as an estimate of the load on that ba
k-end.2. With Shortest Exe
ution Length First (SELF), we measure o�-line the exe
ution timeof ea
h query on an unloaded (idle) ma
hine to 
al
ulate. We then estimate the load on aparti
ular ba
k-end as the sum of the (measured) exe
ution times of all queries outstandingto that ba
k-end.SQF treats ea
h query as equal, while SELF tries to take into a

ount the widely varyingexe
ution times for di�erent queries.3.2 Load LimitingLoad limiting is an addition to SQF and SELF, in whi
h there is a limit set on the load of out-standing queries to a parti
ular ba
k-end. This limit is spe
i�ed in terms of number of queries forSQF and in terms of exe
ution time for SELF. If the load for all ba
k-ends is over the limit, thedispat
her holds on to the queries and does not assign them to any ba
k-end, until the load ona ba
k-end drops below the limit. Limiting the load has two bene�
ial e�e
ts. First, when thereis suÆ
ient load on ea
h ba
k-end, the load balan
er delays its de
ision until later and 
an makean assignment based on more 
urrent information. Se
ond, it avoids overload 
onditions on thedatabase ba
k-ends. 4



www.manaraa.com

3.3 Lo
ality-Aware Request Distribution S
heme (LARD)LARD was developed and shown to be su

essful for load balan
ing stati
 
ontent requests ina 
luster [15℄. The goal of LARD is to 
ombine good load balan
e and high lo
ality. In ourimplementation of LARD, the dispat
her keeps, for ea
h ma
hine, a history of queries that haveexe
uted previously at that ma
hine and the tables that those queries a

essed. When a new queryarrives, a

essing a 
ertain set of tables, the dispat
her 
omputes the set of ba
k-ends that havere
ently a

essed the maximum number of those tables. It sele
ts the least loaded ma
hine fromthat set, unless its load is over a 
ertain threshold. If the sele
ted ma
hine is overloaded, thedispat
her sends the query to the least loaded ma
hine.4 S
heduling Queries in the Presen
e of Writes4.1 Syn
hronous Repli
ation without Con
i
t Avoidan
eThe dispat
her waits for 
ompletion of every write-type query on all database ba
k-ends, beforereturning the answer to the Web server. In this basi
 version, ea
h database engine is responsiblefor read-write and write-write 
on
i
t resolution, while the Dispat
her only ensures a 
onsistentorder for the exe
ution of writes on all engines.4.2 Syn
hronous Repli
ation with Con
i
t Avoidan
eThe dispat
her sends a query to a parti
ular database engine only if there is no read-write or write-write 
on
i
t with an outstanding operation. Queries that 
annot be sent are held ba
k at thedispat
her. Held ba
k queries 
an be sent out of order when there are no outstanding 
on
i
tingoperations on any of the ma
hines. As before, repli
ation is syn
hronous (i.e., the dispat
her waitsfor 
ompletion on all ma
hines before returning the answer to the Web server). As with the loadlimitation te
hnique in Se
tion 3.2, withholding 
on
i
ting queries has two bene�
ial e�e
ts: Itallows the dispat
her to make de
isions on more 
urrent load information and it redu
es databaseoverload.4.3 Asyn
hronous Repli
ationThis version maximizes the available parallelism by removing the restri
tion for syn
hronous exe-
ution of all write-type operations. For ea
h write-type operation, as soon as the query 
ompleteson one database engine, the answer is returned to the Web server. This means that, at any giventime, the same s
ript 
an generate several outstanding queries. All the queries from the same s
riptare issued in-order. The dispat
her sends a new read or write operation, only to the set of ma
hinesthat are up-to-date. To be able to do so, the dispat
her keeps a re
ord of outstanding repli
atedoperations. As in s
heduling for 
on
i
t avoidan
e, a query is not sent to a parti
ular ma
hine, ifthere is a 
on
i
ting outstanding operation on that ma
hine.5 Dispat
her ImplementationThe dispat
her is a multithreaded pro
ess using POSIX threads, that handles all 
ommuni
ationbetween the Web servers and the database engines. It has one thread, 
reated dynami
ally, forea
h Web server pro
ess pro
essing a s
ript.In the basi
 syn
hronous implementation, all threads simply pass all queries to and from thedatabase engines, without waiting. 5



www.manaraa.com

threads

backlog

backlog

backlog

Schedule queues engines
Database

Posted queue

Working

Figure 3: Dispat
her Implementation for the Asyn
hronous VersionUnder load limitation and s
heduling for avoiding 
on
i
ts, when a new query is re
eived, the
orresponding worker thread parses it, and posts it in a shared Posted Queue (See Figure 3). Allsends to the databases engines are handled by a separate manager thread. The manager examinesthe queries from the queue, and de
ides when and to whi
h engine(s) to send ea
h query. Whenthe manager 
annot send any further queries, it blo
ks on a semaphore, waiting for posting events.For asyn
hronous repli
ation, we de
ouple the individual exe
ution of the database enginesthrough a set of S
hedule Queues, one per engine. For ea
h write-type query in the Posted Queuethe manager repli
ates the needed information to all the S
hedule Queues. On
e put in a s
hedulequeue, queries 
an pro
eed if 
on
i
ts have 
leared on their 
orresponding engine. Furthermore,ea
h worker thread keeps a Ba
klog Queue with detailed information about the status of ea
hpending query. The status is updated whenever a query is posted, moved to s
hedule queues, sentto database engines or when one of the engines sends ba
k a reply.For ea
h ongoing transa
tion, the Dispat
her keeps a Dispat
her transa
tion state whi
h
ontains information about ea
h a
tive transa
tion (su
h as the asso
iated s
ript and whi
h databaseshave 
ommitted the transa
tion). In addition, the Dispat
her transa
tion state re
ords the
urrent availability of all database ba
k-ends. From this information, the Dispat
her 
an inferwhi
h databases are up-to-date at a given time.6 Fault Toleran
e and Data AvailabilityThis se
tion dis
usses enhan
ements to the basi
 e-
ommer
e 
luster design su
h as robustness anddata availability.In the basi
 design, despite having high database repli
ation, data availability is limited. Ifthe Dispat
her is down, we 
annot a

ess the data. We 
an provide both fault toleran
e anddata availability through repli
ation of the Dispat
her state onto a ba
kup Dispat
her. If theprimary Dispat
her fails, the ba
kup Dispat
her 
an 
ontinue the task of database 
oordinatorfor the transa
tions the primary was responsible for. We do not perform any disk logging at theDispat
her(s). If both Dispat
hers fail, the Dispat
her state 
an be re
onstru
ted from the logskept at the Web servers and databases.Full transa
tion state repli
ation onto the ba
kup would imply extensive 
ommuni
ation be-tween the two Dispat
hers. We 
hoose a solution whi
h minimizes the overheads during normaloperation, at the expense of in
reased 
omplexity on re
overy. In our solution, 
ommuni
ationo

urs only at the end of the transa
tion. Before any 
ommit is issued to a database, the primaryDispat
her sends a 
ommit transa
tion message to the ba
kup. This message 
ontains a transa
tionidenti�er and a log of write type queries that have o

ured during the transa
tion.On fail-over, the ba
kup Dispat
her rolls-ba
k all a
tive transa
tions on the database ba
k-6



www.manaraa.com

ends. If a database has already 
ommitted a transa
tion, the attempted roll-ba
k would returnan error message. After the roll-ba
k, the log of writes is replayed on all the databases that havenot already 
ommitted. On ea
h 
ommit transa
tion message, the primary piggyba
ks informationabout transa
tions that have been 
ommitted on all databases. This allows the ba
kup to updateits list of a
tive transa
tions.For the above s
heme to work, we need a me
hanism whi
h enables the ba
kup to roll-ba
ktransa
tions on behalf of the primary who initiated them. This is not possible by default with ourdatabase engine. We add a 
ommuni
ation daemon at ea
h database engine. This daemon servesas an intermediary between the Dispat
hers and database engines. It re
eives, and delivers thequeries to its database engine. Furthermore, upon re
eiving a a spe
ial 
ommand from the ba
kupDispat
her, this daemon be
omes in 
harge of rolling-ba
k all a
tive transa
tions on its ma
hineand reporting ba
k on the out
omes. This s
heme also takes 
are of the 
ase where the primaryDispat
her fails before rea
hing the 
ommit point of the transa
tion, and thus the ba
kup doesn'tknow what transa
tion needs to be rolled-ba
k.7 TPC-W Ben
hmarkThe TPC-W ben
hmark from the Transa
tion Pro
essing Coun
il [18℄ is a transa
tional Web ben
h-mark spe
i�
ally designed for evaluating e-
ommer
e systems. The performan
e metri
 reported byTPC-W is the number of Web intera
tions per se
ond. Several intera
tions are used to simulate thea
tivity of a retail store. The database size is determined by the number of items in the inventoryand the size of the 
ustomer population. TPC-W simulates three di�erent intera
tion mixes byvarying the ratio of browse to buy: browsing, shopping, and ordering.Table 1 lists all the 14 di�erent intera
tions and their proportions in the di�erent pro�les. The
olumn Time, in the table refers to the average time (in millise
onds) measured for ea
h intera
tionon an unloaded ma
hine. This gives an idea of the relative 
omplexity of the intera
tions. Ea
hintera
tion also involves requests for multiple embedded images, ea
h image 
orresponding to anitem in the inventory. Ex
ept for Order Inquiry, all intera
tions query the database server.Table 2 lists the database tables and their sizes in our test-bed. The sizes in
lude that ofthe ne
essary indexes on ea
h of the tables to make the queries in the intera
tions eÆ
ient. Theinventory images, totaling 18.3 GB of data, are resident on ea
h of the Apa
he servers.We implement ea
h of the intera
tions as a separate PHP s
ript. We also implemented a 
lient-browser emulator. A session is a sequen
e of intera
tions for the same 
ustomer. For ea
h 
ustomersession, the 
lient emulator opens a persistent HTTP 
onne
tion to the Web server and 
loses itat the end of the session. Ea
h emulated 
lient waits for a 
ertain think time before initiating thenext intera
tion. The session time and think time are generated from a random distribution withthe spe
i�ed mean. We use 100 
lients, a mean session length time of 2 minutes, and a mean thinktime of 1 se
ond for all our experiments.7.1 Hardware PlatformWe use the same hardware for all ma
hines running the emulated-
lient, web-servers, Dispat
herand database engines. Ea
h one of them has an AMD Athlon 800Mhz pro
essor running FreeBSD4.0, 256MB SDRAM, and a 30G ATA-66 disk drive. They are all 
onne
ted through 100MBpsEthernet LAN.
7



www.manaraa.com

Web Intera
tion Browsing Shopping Ordering Time (ms)Browse 95% 80% 50%Home 29.00% 16.00% 9.12% 26New Produ
ts 11.00% 5.00% 0.46% 241Best Sellers 11.00% 5.00% 0.46% 701Produ
t Detail 21.00% 17.00% 12.35% 25Sear
h Request 12.00% 20.00% 14.53% 22Sear
h Results 11.00% 17.00% 13.08% 288Order 5% 20% 50%Shopping Cart 2.00% 11.60% 13.53% 37Customer Registration 0.82% 3.00% 12.86% 19Buy Request 0.75% 2.60% 12.73% 47Buy Con�rm 0.69% 10.20% 10.18% 40Order Inquiry 0.30% 0.75% 0.25% 3Order Display 0.25% 0.66% 0.22% 77Admin Request 0.10% 0.10% 0.12% 21Admin Con�rm 0.09% 0.09% 0.11% 4869Table 1: Web Intera
tion Mix and Chara
teristi
sTable Name Number of Rows Table Size (KB)Customer 2,880,000 1341139Address 5,760,000 861567Orders 2,592,000 269090Order Line 7,782,313 988555CC XACTS 2,592,000 252800Item 100,000 63680Author 25,000 9540Country 92 8Table 2: Database Table Chara
teristi
s7.2 SoftwareWe use Apa
he v.1.3.22 [1℄ for our web-server, 
on�gured with the PHP v.4.0.1 module [16℄ provid-ing server-side s
ripting for generating dynami
 
ontent. We limit the maximum number of Apa
hepro
esses to 100, the same value as the number of 
lients. We use MySQL v.3.23.43-max [13℄ asour database server.8 Experimental Results8.1 Baseline ExperimentWe run the TPC-W ben
hmark with one Web server ma
hine and one database engine ma
hine. Weobtain 5.1, 8.5, and 20.4 intera
tions per se
ond for the browsing, shopping and ordering workloadmix, respe
tively. A dispat
her is not ne
essary in this 
on�guration. There is no measurabledi�eren
e in terms of throughput, however, when we interpose the dispat
her between the Web8



www.manaraa.com

0
10
20
30
40
50
60
70
80
90

100

Browsing Shopping Ordering
C

P
U

 U
til

iz
at

io
n (%

)

Apache

MySQL

Figure 4: CPU Utilization for the Web server and Database server in the 1-1 
on�guration
Browsing Mix

0

10

20

30
40

50

60

70

0 2 4 6 8
Database engines

T
hr

ou
gh

pu
t (t
ps

)

Shopping Mix

0

10

20

30

40

50

60

70

0 2 4 6 8
Database engines

Ordering Mix

0

10

20

30

40

50

60

70

0 2 4 6 8
Database engines

Base

Best-Sync

Async

Figure 5: Throughput s
aling for the browsing, shopping and ordering mixesserver and the database ma
hine.More importantly, �gure 4 presents the CPU utilization on the Web server ma
hine and thedatabase server ma
hine. For all the three intera
tion mixes, the database server is the bottlene
k.For the ordering mix, the CPU utilization on the database server ma
hine does not rea
h 100%.We attribute this to lo
k waiting times in this write-heavy workload.All further results are obtained with 1 to 8 database server ma
hines. We use a number of Webserver ma
hines suÆ
ient for the Web server stage not to be the bottlene
k. The largest numberof Web server ma
hines used for any experiment was 3. The dispat
her is never a bottlene
k forthese 
luster sizes.8.2 Overall S
aling ResultsIn this se
tion we dis
uss overall results for the best 
ombination of load balan
ing and s
heduling.We dis
uss the relative merits of various strategies in more detail in Se
tion 8.3. The top graph inFigure 5 shows the overall s
aling results for the best strategy (asyn
hronous repli
ation) for ea
hof the three workload mixes. In the x-axis we have the number of database ma
hines and in they-axis the number of intera
tions per se
ond.The browsing and the shopping workload mixes s
ale very well. We get almost linear improve-ment with ea
h added database ma
hine up to 8 ma
hines, where we get a fa
tor of 7 improvementfor the browsing mix and a fa
tor of 6 for the shopping mix. The good results of the shopping mixare espe
ially en
ouraging as this mix is 
onsidered to be the most representative of e-
ommer
e siteoperation. The performan
e of the browsing mix re
e
ts a read-heavy workload with little syn
hro-nization. Its good performan
e is therefore not surprising. The ordering workload mix performs9



www.manaraa.com

25

30

35

40

45

50

55

60

65

70

0 500 1000 1500 2000 2500 3000

Limit (execution time)

T
hr

ou
gh

pu
t (t
ps

)

SELF-Sync SELF-Async

25

30

35

40

45

50

55

60

65

70

0 10 20 30 40
Limit (no of queries)

T
hr

ou
gh

pu
t (t
ps

)

SQF-Sync SQF-Async

Figure 6: Throughput for asyn
hronous versus syn
hronous repli
ation as a fun
tion of thresholdvalue for SFQ and SELF for shopping mixless well. It s
ales linearly until 4 databases ma
hines, with an improvement of almost a fa
tor of 3at 4 ma
hines, but there is only a 10% further improvement for eight ma
hines. We attribute thisto a la
k of parallelism in the workload. About 50% of this mix 
onsists of update queries, whi
hare exe
uted on all repli
as and therefore o�er no room for improvement. Fortunately, this mix is
onsidered less representative of the normal operation of e-
ommer
e sites than the shopping mix.8.3 Comparison of Load Balan
ing and S
heduling MethodsAsyn
hronous repli
ation is the method of 
hoi
e. Figure 5 also 
ontains the best result for anystrategy that does not in
lude asyn
hronous repli
ation. Clearly, the results are inferior for allmixes. Furthermore, the bottom graphs in Figure 5 presents the s
aling results for a shortest queue�rst (SQF) distribution strategy with syn
hronous s
heduling of queries, no load limiting, and noattention paid to 
on
i
ts. The results are poor for all workloads.For asyn
hronous repli
ation, the 
hoi
e between SQF, SELF, or LARD, and the exa
t valueof the threshold matter mu
h less in terms of overall throughput when 
ompared to the di�eren
ebetween syn
hronous and asyn
hronous repli
ation. In Figure 6, for instan
e, we present the 8-ma
hine throughput for the shopping mix for asyn
hronous versus syn
hronous repli
ation for SQFand SELF as a fun
tion of the threshold used. Unlike syn
hronous, the resulting throughput forasyn
hronous is almost independent of the 
hoi
e between SQF and SELF for a large range ofthresholds.8.4 Detailed ComparisonAs a �nal 
omparison, we present the results for various 
ombinations of load balan
ing and s
hedul-ing strategies for 8 pro
essors for ea
h workload mix in Figures 7 to 9.The graphs for all the three mixes show: all load balan
ing versions with Basi
 Syn
hronization(the �rst three bars), Con
i
t Avoidan
e (the bars in the middle) and Asyn
hronous S
heduling(the last three bars). All the Basi
 Syn
hronization versions assign queries immediately, whileall the other versions 
an a

umulate queries. We want to separate the gains through Con
i
tAvoidan
e and Load Limiting sin
e they have the same net e�e
t: redu
ing database 
ongestionand in
reasing the de
ision window for the load balan
er. To show the gains obtained by ea
h10



www.manaraa.com

Browsing Mix

0

10

20

30

40

50

60

70

Base-
SQF

Base-
SELF

Base-
LARD

Aconfl-
SQF

Aconfl-
SELF

Aconfl-
LARD-
SELF

Aconfl-
SQF-
limit

Aconfl-
SELF-
limit

Aconfl-
LARD-
SELF-
limit

Async-
SQF-
limit

Async-
SELF-
limit

Async-
LARD-
SELF-
limit

T
hr

ou
gh

pu
t (t
ps

)

Figure 7: Throughput 
omparisons for the TPC-W browsing mix
Shopping Mix

0

10

20

30

40

50

60

70

Base-
SQF

Base-
SELF

Base-
LARD

Aconfl-
SQF

Aconfl-
SELF

Aconfl-
LARD-
SELF

Aconfl-
SQF-
limit

Aconfl-
SELF-
limit

Aconfl-
LARD-
SELF-
limit

Async-
SQF-
limit

Async-
SELF-
limit

Async-
LARD-
SELF-
limit

T
hr

ou
gh

pu
t (t
ps

)

Figure 8: Throughput 
omparisons for the TPC-W shopping mix
Ordering Mix

0

10

20

30

40

50

60

70

Base-
SQF

Base-
SELF

Base-
LARD

Aconfl-
SQF

Aconfl-
SELF

Aconfl-
LARD-
SELF

Aconfl-
SQF-
limit

Aconfl-
SELF-
limit

Aconfl-
LARD-
SELF-
limit

Async-
SQF-
limit

Async-
SELF-
limit

Async-
LARD-
SELF-
limit

T
hr

ou
gh

pu
t (t
ps

)

Figure 9: Throughput 
omparisons for the TPC-W ordering mix11



www.manaraa.com

0

10

20

30

40

50

60

70

Browsing Shopping Ordering

T
h

ro
u

g
h

p
u

t (t
p

s)

Base

Availability

Figure 10: The overhead of providing fault toleran
e and data availabilityindividually, we present the Con
i
t Avoidan
e results with and without Load Limiting. For allthe bars where a limit is shown, we use the best experimentally determined limit for SQF andSELF. In parti
ular, the best limit value for SQF was measured through sensitivity experimentsas: 1 for the browsing mix, 2 for the shopping mix and 10 for the ordering mix. A 1 se
ond loadlimit for SELF gives good results for all proto
ols and mixes. In all LARD experiments, we use aload measure in terms of exe
ution time, with the same overload threshold of 1 se
ond as in SELF.For the browsing mix, we see that Load Limiting is an important fa
tor, with s
heduling forsyn
hronization a se
ond order improvement. In this workload, syn
hronization is rare, whilefrequent heavy-weight reads 
ause the database to be 
ongested.For the other two mixes, s
heduling for syn
hronization plays the most important role. Inthe shopping mix, where there is still database 
ongestion due to heavyweight reads, and 
on
i
tsare relatively frequent, avoiding 
on
i
ts helps. All the asyn
hronous versions further improveperforman
e by a signi�
ant fra
tion 
ompared to the best syn
hronous version.In the ordering mix, the database is not 
ongested due to the lightweight workload with ahigh fra
tion of writes, thus both te
hniques that redu
e 
ongestion (Con
i
t Avoidan
e and LoadLimiting) are of little help. On the other hand, the high frequen
y of syn
hronizations explains thefa
tor of 2 impa
t on performan
e of all Asyn
hronous s
hedulers.In all the LARD 
ombinations, lo
ality does not bring any bene�ts 
ompared to SELF. This ismainly due to the 
ompute-intensive nature of the read queries. Furthermore, most read queriesa

ess only a few tables (e.g. item, author, order line).In Figure 10 we show that the overhead for fault toleran
e and data availability is negligible forthe browsing and shopping mixes and around 25% for the ordering mix. The explanation is thatread-only s
ripts are not transa
tional in TPC-W, and thus do not in
ur overhead, while read-writes
ripts are lightweight and transa
tional (in
ur overhead).8.5 SummaryFor the intera
tion mixes that 
ontain a non-trivial fra
tion of write-type queries su
h as shoppingand ordering, asyn
hronous s
heduling gives the relatively largest gains. Limiting ma
hine load isstill important for read-heavy workloads su
h as the browsing mix. However, using a load measurein terms of exe
ution length allows for relative independen
e on the exa
t value of this limit. In
ontrast, we 
annot 
hoose any one limit in terms of number of outstanding queries that will givegood performan
e for all three mixes.
12



www.manaraa.com

9 Related WorkCurrent high-volume Web servers su
h as the oÆ
ial Web server used for the Olympi
 games [5, 6℄and IBM's WebSphere, Commer
e Edition [12℄ rely on expensive super
omputers for s
aling tohigh request volumes. Our solution provides s
alability using 
ommodity hardware and softwarewith no modi�
ations.Our LARD s
heme is similar to the lo
ality-aware request distribution proposed by Pai etal. [15℄. for stati
 
ontent. They show that for a web engine serving stati
 
ontent, LARD out-performs both pure lo
ality-based and weighted round-robin s
hemes. In 
ontrast, we show that,when the web server is targeted at serving dynami
 
ontent, s
heduling requests for redu
ing syn-
hronization laten
y is more important than distributing requests for lo
ality.Zhang et al. [19℄ have previously extended LARD to dynami
 
ontent in their HACC proje
t.Their study, however, is limited to read-only 
ontent workloads. In a more general dynami
 
ontentweb server, repli
ation implies the need for 
onsisten
y maintenan
e. In this paper, we develop andevaluate s
heduling te
hniques that take into a

ount the interplay between load balan
ing and
onsisten
y maintenan
e.Our load balan
er is also related to load balan
ing s
hemes used in 
luster database systems [9℄,although the approa
hes are orthogonal. The traditional approa
h to load balan
ing in 
lusterdatabase systems has been that data pla
ement drives the load balan
ing. We use repli
ationinstead of de
lustering for data pla
ement. Previously, repli
ation has been mainly used for faulttoleran
e and data availability [2, 10℄.Neptune [17℄ adopts a primary-
opy approa
h to providind 
onsisten
y in a partitioned servi
e
luster. However, their s
alability study is limited to Web appli
ations with loose 
onsisten
ysu
h as bulletin boards and au
tion sites, where s
aling is easier to a
hieve. They do not addresse-
ommer
e workloads or other Web appli
ations with relatively strong 
onsisten
y requirements.10 Con
lusionIn this paper, we investigate how an e-
ommer
e site 
an be s
aled up from a single ma
hine runninga Web server and a database to a 
luster of Web server ma
hines and database engine ma
hines.We avoid modi�
ations to the Web server, the database engine, or the s
ripts for a

essing dynami

ontent. We also assume software platforms in 
ommon use: Apa
he web servers, mySQL databaseengine, and the PHP s
ripting language. As a result, our s
aling methods are appli
able withoutburdensome development or re
on�guration of the site. We use the various workload mixes ofthe TPC-W ben
hmark to evaluate overall s
aling behavior and the 
ontribution of various loadbalan
ing and s
heduling algorithms to good s
aling behavior.We �nd that a 
luster ar
hite
ture s
ales well for the most representative of the TPC-W work-load mixes, the shopping mix, and also for the browsing mix. The write-heavy ordering mix s
alesless well. The key ingredient of a s
alable load balan
ing and s
heduling poli
y is asyn
hronousrepli
ation, in whi
h writes 
omplete and are returned to the Web server as soon as a single in-stan
e of the write 
ompletes at one of the database engines. The a
tual 
hoi
e of load balan
ingstrategy is less important. Somewhat better results, in terms of response times and insensitivityto threshold values, are obtained if query exe
ution time is taken into a

ount for load balan
ing.Lo
ality-based load balan
ing poli
ies, found very pro�table for stati
 Web workloads, o�er littleadvantage.
13



www.manaraa.com

Referen
es[1℄ The Apa
he Software Foundation. http://www.apa
he.org/.[2℄ J. F. Bartlett. A Non Stop kernel. In Pro
eedings of the 8th ACM Symposium on Operating SystemsPrin
iples, pages 22{29, De
ember 1981.[3℄ Haran Boral, William Alexander, Larry Clay, George Copeland, S
ott Danforth, Mi
hael Franklin, BrianHart, Mar
 Smith, and Patri
k Valduriez. Prototyping Bubba, A Highly Parallel Database System. InIEEE Transa
tions on Knowledge and Data Engineering, volume 2, pages 4{24, Mar
h 1990.[4℄ Enrique V. Carrera and Ri
ardo Bian
hini. EÆ
ien
y vs. portability in 
luster-based network servers.In Pro
eedings of the 8th Symposium on the Prin
iples and Pra
ti
e of Parallel Programming, pages113{123, June 2001.[5℄ Jim Challenger, Paul Dantzig, and Arun Iyengar. A S
alable and Highly Available System for ServingDynami
 Data at Frequently A

essed Web Sites. In Pro
eedings of Super
omputing'98, 1998.[6℄ Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed. A Publishing Systemfor EÆ
iently Creating Dynami
 Web Data. In Pro
eedings of IEEE INFOCOM 2000, Mar
h 2000.[7℄ Surajit Chaudhuri and Gerhard Weikum. Rethinking database system ar
hite
ture: Towards a self-tuning RISC-style database system. In VLDB 2000, Pro
eedings of 26th International Conferen
e onVery Large Data Bases, pages 1{10, September 2000.[8℄ Cis
o Systems In
. Lo
alDire
tor. http://www.
is
o.
om.[9℄ George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data pla
ement in Bubba. InPro
eedings of Asso
iation for Computing Ma
hinery Spe
ial Interest Group on Management of Data,pages 99{108, June 1988.[10℄ Ron Flannery. The Informix Handbook. Prenti
e Hall PTR, 2000.[11℄ IBM Corporation. IBM intera
tive network dispat
her. http://www.i
s.raleigh.ibm.
om.[12℄ Anant Jhingran. Anatomy of a real e-
ommer
e system. In Pro
eedings of the Asso
iation for ComputingMa
hinery Spe
ial Interest Group on Management of Data, May 2000.[13℄ MySQL. http://www.mysql.
om.[14℄ The Net
raft Webserver Survey. http://www.net
raft.
om/survey/.[15℄ Vivek S. Pai, Mohit Aron, Gaurav Banga, Mi
hael Svendsen, Peter Drus
hel, Willy Zwaenepoel, andEri
h Nahum. Lo
ality-aware request distribution in 
luster-based network servers. In Pro
eedings of theEighth International Conferen
e on Ar
hite
tural Support for Programming Languages and OperatingSystems, pages 205{216, O
tober 3{7, 1998.[16℄ PHP Hypertext Prepro
essor. http://www.php.net.[17℄ Kai Shen, Tao Yang, Lingkun Chu, JoAnne L. Holliday, Doug Kus
hner, and Hui
an Zhu. Neptune:S
alable Repli
a Management and Programming Support for Cluster-based Network Servi
es. In Pro-
eedings of the Third USENIX Symposium on Internet Te
hnologies and Systems, pages 207{216, Mar
h2001.[18℄ Transa
tion Pro
essing Coun
il. http://www.tp
.org/.[19℄ Xiaolan Zhang, Mi
hael Barrientos, J. Bradley Chen, and Margo Seltzer. "HACC: An ar
hite
ture for
luster-based web servers". In Pro
eedings of the 2000 Annual Usenix Te
hni
al Conferen
e, June 2000.
14


