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Saling e-Commere SitesCristiana Amza, Alan L. Cox, Willy ZwaenepoelDepartment of Computer Siene, Rie Universityfamza, al, willyg�s.rie.eduAbstratWe investigate how an e-ommere site an be saled up from a single mahine running aWeb server and a database to a luster of Web server mahines and database engine mahines.In order to redue development, maintenane, and installation osts, we avoid modi�ations toboth the Web server and the database engine, and we repliate the database on all databasemahines. All load balaning and sheduling deisions are implemented in a separate dispather.We �nd that suh an arhiteture sales well for the ommon e-ommere workload of theTPC-W benhmark, provided that suitable load balaning and sheduling strategies are inplae. Key among these strategies is asynhronous sheduling, in whih writes omplete andare returned to the user as soon as a single instane of the write ompletes at one of thedatabase engines. The atual hoie of load balaning strategy is less important. In partiularloality-based load balaning poliies, found very pro�table for stati Web workloads, o�er littleadvantage.1 IntrodutionE-ommere sites ommonly onsist of a front-end Web server and a bak-end database (See Fig-ure 1). The (dynami) ontent of the site is stored in the database. A number of sripts provideaess to that ontent. The lient sends an HTTP request to the web server ontaining the URLof the sript and some parameters. The Web server exeutes the sript, whih issues a number ofSQL queries to the database and formats the results as an HTML page. This page is then returnedto the lient as an HTTP response.In small sites the Web server front-end and the database run on the same mahine, whih maybeome a bottlenek. In this paper we study how to sale up suh e-ommere sites by using lusters.The simplest attempt to saling is to run the Web server and the database on a separate mahine.Beyond that, multiple mahines may be used for eah. We impose the onstraint that the Webserver, the database engine, and the sripts used for aessing the dynami ontent must remainthe same as for the single-mahine ase. We reognize that additional performane enhanementsmay be available if this onstraint is lifted, but we argue that it is essential for transparent salingof e-ommere sites without undue development or administration.
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PHP modFigure 1: Common E-ommere Site Arhiteture1
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Subjet to this onstraint, we investigate issues suh as: Should additional mahines be devotedto Web servers or databases? What load balaning and sheduling poliies should be used forsaling ?Muh reent work in saling web servers has foused on load balaning for stati ontent [15,19, 4℄. Content repliation and loality-aware load distribution [15℄ with simple load measuressuh as the number of onnetions were shown to produe good saling behavior. We show thate-ommere sites an also be made to sale by means of ontent repliation, but that di�erentload balaning and sheduling tehniques are neessary. Intuitively, the need for di�erent loadbalaning and sheduling tehniques arises from the basi di�erenes between stati and dynamiontent. The latter are typially more CPU-intensive, aess a small number of tables through asmall number of sripts, and, above all, ontain writes.We fous on read-one, write-all repliation shemes. Read-only queries are sent aording to aload balaning sheme, while the exeution of write queries is repliated on all mahines. We preferthis approah over data partitioning approahes [9, 3℄, beause it is simpler, and, in partiular,beause it leaves the sripts unhanged. We have implemented and evaluated a number of loadbalaning and sheduling poliies spei�ally designed for the harateristis of e-ommere sites.Our experimental platform onsists of a luster of AMD Athlon 800Mhz proessor PCs on-neted by Fast Ethernet and running FreeBSD. Our largest experimental setup inludes 8 databaseserver mahines. We run three popular open soure software pakages - the Apahe web server [1℄,the MySQL database server [13℄, and the PHP web-sripting/appliation development language [16℄(See Figure 1). This environment has beome a de fato standard, at least in the Unix world. Themost reent Netraft survey [14℄ showed 63% of all Web sites running Apahe. About 40% of thesesites had the PHP module ompiled in. We use the TPC-W benhmark [18℄ to evaluate variousload balaning and sheduling poliies. The TPC-W benhmark models an e-ommere site. Itspei�es the data of the site and the possible interations with the data. It has three workloadmixes. The shopping mix is meant to be the most representative. The browsing mix reets aread-heavy workload and the ordering mix a write-heavy workload.Our main onlusions are:1. With appropriate load balaning and sheduling tehniques, the TPC-W benhmark saleswell at least up to 8 mahines for the browsing and the (ommon) shopping workloads. Theordering workload sales well up to 4 mahines but then attens out.2. Sheduling strategies that optimize synhronization lateny, suh as asynhronous repliationhave the most bene�ial impat.3. Optimizing for loality has almost no impat.The remainder of this paper is strutured as follows. Setion 2 desribes the salable lusterarhiteture and motivates our use of repliation. Setion 3 desribes the load balaning tehniques,and Setion 4 desribes the sheduling tehniques explored in the paper. We experimentally in-vestigate how the di�erent load balaning and sheduling tehniques a�et saling in Setion 8.Setion 9 disusses related work. Setion 10 onludes the paper.2 Cluster ArhitetureWe onsider lusters of ommodity hardware omponents, i.e., PCs, LANs, and an L4 swith.2
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Figure 2: Cluster Arhiteture Design2.1 HardwareOur luster-based server arhiteture primarily onsists of a set of Web-server front-end nodes anda set of database engine bak-end nodes (see �gure 2). This arhiteture allows us to deal withbottleneks both in the Web server front-ends and in the database bak-ends. In general, we havefound that for e-ommere workloads the database bak-ends beome the bottlenek before theWeb server front-ends (See Setion 8.1). With enough bak-ends, however, there is inevitably apoint where a single front-end beomes the limiting fator, so our arhiteture allows for multiplefront-ends.When more than one front-end is present, an L4 swith and a dispather node are also inluded.The use of an L4 swith makes the distributed nature of the server transparent to the lients. Weassume that the L4 swith simply performs a round-robin distribution of inoming requests amongWeb server front-ends. In our experiene, this leads to adequate load distribution among thefront-ends, and there appears to be little gain to be expeted from any more sophistiated strategy.The dispather implements the load balaning and sheduling of queries oming from the Webserver front-ends and going to the database bak-ends. If there is only a single front-end, thenthis funtionality an be implemented on the front-end node. To the Web servers, the dispatherlooks like a database engine. The web server sends it queries and reeives responses as before.Likewise, the database engines interat with the dispather as if it were a regular Web server. As aresult, we an use any o�-the-shelf Web server (e.g., Apahe) and any o�-the-shelf database (e.g.,MySQL) without modi�ation. The single dispather potentially introdues a saling bottlenek.We have not found that to be the ase for the number of mahines we onsidered. We have alsoexperimented with a primary-bakup Dispather implementation (see setion 6).2.2 RepliationWe repliate the entire database on eah of the database engines. This strategy allows a site to growinrementally, by simply repliating the database on the new mahine, and updating the dispatherwith the identity of the new mahine. There is no need for a re-organization of the database.Traditionally, database load balaning has involved delustering (data partitioning aross theluster) [9, 3℄. By using this shared-nothing model, lustered database systems have avoided on-sisteny maintenane overheads. On the downside, it requires either expert administrators fordatabase on�guration and re-on�guration, or rather omplex optimizers to minimize the datamovement between mahines [7℄.Repliation brings with it the ost of repliating the exeution of update queries for maintaining3
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the table replias onsistent. Fortunately, e-ommere queries that update the database are usuallylightweight ompared to read-only requests (See setion 7). For instane, typially only the reordpertaining to a partiular ustomer or produt is updated, while any given ustomer may browsethrough the whole produt database. Repliation also brings with it the need for synhronizationfor bringing all replias up-to-date. We address these issues through our sheduling algorithms inSetion 4.2.3 OperationThe Web server reeives inoming lient requests and exeutes the orresponding sripts, as before.The queries, however, are sent to the dispather instead of to the database. The dispather parseseah inoming query to determine its type (read-only or write) and the tables aessed. Subse-quently, read-only (SELECT) queries are sent to only one database mahine aording to the loadbalaning sheme in use, while the exeution of write queries (INSERT, UPDATE, DELETE) isrepliated on all mahines. We also support transation isolation. The transation delimiters aretreated like write-type queries (i.e., their exeution is repliated on all mahines). The databaseexeutes the queries, as before, and sends the results to the dispather. The dispather updates itsstate and forwards the results to the Web server.3 Load Balaning Strategies for Read-Only Queries3.1 Weighted Round Robin ShemesWeighted round-robin is a ommon load balaning sheme in stati-ontent luster servers [11, 8℄.The inoming requests are distributed in round-robin fashion, weighted by an estimate of the loadon the di�erent bak-ends.We ompare two weighted round robin shemes with di�erent load measures:1. Shortest Queue First (SQF) uses the number of outstanding queries to a partiular bak-end as an estimate of the load on that bak-end.2. With Shortest Exeution Length First (SELF), we measure o�-line the exeution timeof eah query on an unloaded (idle) mahine to alulate. We then estimate the load on apartiular bak-end as the sum of the (measured) exeution times of all queries outstandingto that bak-end.SQF treats eah query as equal, while SELF tries to take into aount the widely varyingexeution times for di�erent queries.3.2 Load LimitingLoad limiting is an addition to SQF and SELF, in whih there is a limit set on the load of out-standing queries to a partiular bak-end. This limit is spei�ed in terms of number of queries forSQF and in terms of exeution time for SELF. If the load for all bak-ends is over the limit, thedispather holds on to the queries and does not assign them to any bak-end, until the load ona bak-end drops below the limit. Limiting the load has two bene�ial e�ets. First, when thereis suÆient load on eah bak-end, the load balaner delays its deision until later and an makean assignment based on more urrent information. Seond, it avoids overload onditions on thedatabase bak-ends. 4
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3.3 Loality-Aware Request Distribution Sheme (LARD)LARD was developed and shown to be suessful for load balaning stati ontent requests ina luster [15℄. The goal of LARD is to ombine good load balane and high loality. In ourimplementation of LARD, the dispather keeps, for eah mahine, a history of queries that haveexeuted previously at that mahine and the tables that those queries aessed. When a new queryarrives, aessing a ertain set of tables, the dispather omputes the set of bak-ends that havereently aessed the maximum number of those tables. It selets the least loaded mahine fromthat set, unless its load is over a ertain threshold. If the seleted mahine is overloaded, thedispather sends the query to the least loaded mahine.4 Sheduling Queries in the Presene of Writes4.1 Synhronous Repliation without Conit AvoidaneThe dispather waits for ompletion of every write-type query on all database bak-ends, beforereturning the answer to the Web server. In this basi version, eah database engine is responsiblefor read-write and write-write onit resolution, while the Dispather only ensures a onsistentorder for the exeution of writes on all engines.4.2 Synhronous Repliation with Conit AvoidaneThe dispather sends a query to a partiular database engine only if there is no read-write or write-write onit with an outstanding operation. Queries that annot be sent are held bak at thedispather. Held bak queries an be sent out of order when there are no outstanding onitingoperations on any of the mahines. As before, repliation is synhronous (i.e., the dispather waitsfor ompletion on all mahines before returning the answer to the Web server). As with the loadlimitation tehnique in Setion 3.2, withholding oniting queries has two bene�ial e�ets: Itallows the dispather to make deisions on more urrent load information and it redues databaseoverload.4.3 Asynhronous RepliationThis version maximizes the available parallelism by removing the restrition for synhronous exe-ution of all write-type operations. For eah write-type operation, as soon as the query ompleteson one database engine, the answer is returned to the Web server. This means that, at any giventime, the same sript an generate several outstanding queries. All the queries from the same sriptare issued in-order. The dispather sends a new read or write operation, only to the set of mahinesthat are up-to-date. To be able to do so, the dispather keeps a reord of outstanding repliatedoperations. As in sheduling for onit avoidane, a query is not sent to a partiular mahine, ifthere is a oniting outstanding operation on that mahine.5 Dispather ImplementationThe dispather is a multithreaded proess using POSIX threads, that handles all ommuniationbetween the Web servers and the database engines. It has one thread, reated dynamially, foreah Web server proess proessing a sript.In the basi synhronous implementation, all threads simply pass all queries to and from thedatabase engines, without waiting. 5
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Figure 3: Dispather Implementation for the Asynhronous VersionUnder load limitation and sheduling for avoiding onits, when a new query is reeived, theorresponding worker thread parses it, and posts it in a shared Posted Queue (See Figure 3). Allsends to the databases engines are handled by a separate manager thread. The manager examinesthe queries from the queue, and deides when and to whih engine(s) to send eah query. Whenthe manager annot send any further queries, it bloks on a semaphore, waiting for posting events.For asynhronous repliation, we deouple the individual exeution of the database enginesthrough a set of Shedule Queues, one per engine. For eah write-type query in the Posted Queuethe manager repliates the needed information to all the Shedule Queues. One put in a shedulequeue, queries an proeed if onits have leared on their orresponding engine. Furthermore,eah worker thread keeps a Baklog Queue with detailed information about the status of eahpending query. The status is updated whenever a query is posted, moved to shedule queues, sentto database engines or when one of the engines sends bak a reply.For eah ongoing transation, the Dispather keeps a Dispather transation state whihontains information about eah ative transation (suh as the assoiated sript and whih databaseshave ommitted the transation). In addition, the Dispather transation state reords theurrent availability of all database bak-ends. From this information, the Dispather an inferwhih databases are up-to-date at a given time.6 Fault Tolerane and Data AvailabilityThis setion disusses enhanements to the basi e-ommere luster design suh as robustness anddata availability.In the basi design, despite having high database repliation, data availability is limited. Ifthe Dispather is down, we annot aess the data. We an provide both fault tolerane anddata availability through repliation of the Dispather state onto a bakup Dispather. If theprimary Dispather fails, the bakup Dispather an ontinue the task of database oordinatorfor the transations the primary was responsible for. We do not perform any disk logging at theDispather(s). If both Dispathers fail, the Dispather state an be reonstruted from the logskept at the Web servers and databases.Full transation state repliation onto the bakup would imply extensive ommuniation be-tween the two Dispathers. We hoose a solution whih minimizes the overheads during normaloperation, at the expense of inreased omplexity on reovery. In our solution, ommuniationours only at the end of the transation. Before any ommit is issued to a database, the primaryDispather sends a ommit transation message to the bakup. This message ontains a transationidenti�er and a log of write type queries that have oured during the transation.On fail-over, the bakup Dispather rolls-bak all ative transations on the database bak-6
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ends. If a database has already ommitted a transation, the attempted roll-bak would returnan error message. After the roll-bak, the log of writes is replayed on all the databases that havenot already ommitted. On eah ommit transation message, the primary piggybaks informationabout transations that have been ommitted on all databases. This allows the bakup to updateits list of ative transations.For the above sheme to work, we need a mehanism whih enables the bakup to roll-baktransations on behalf of the primary who initiated them. This is not possible by default with ourdatabase engine. We add a ommuniation daemon at eah database engine. This daemon servesas an intermediary between the Dispathers and database engines. It reeives, and delivers thequeries to its database engine. Furthermore, upon reeiving a a speial ommand from the bakupDispather, this daemon beomes in harge of rolling-bak all ative transations on its mahineand reporting bak on the outomes. This sheme also takes are of the ase where the primaryDispather fails before reahing the ommit point of the transation, and thus the bakup doesn'tknow what transation needs to be rolled-bak.7 TPC-W BenhmarkThe TPC-W benhmark from the Transation Proessing Counil [18℄ is a transational Web benh-mark spei�ally designed for evaluating e-ommere systems. The performane metri reported byTPC-W is the number of Web interations per seond. Several interations are used to simulate theativity of a retail store. The database size is determined by the number of items in the inventoryand the size of the ustomer population. TPC-W simulates three di�erent interation mixes byvarying the ratio of browse to buy: browsing, shopping, and ordering.Table 1 lists all the 14 di�erent interations and their proportions in the di�erent pro�les. Theolumn Time, in the table refers to the average time (in milliseonds) measured for eah interationon an unloaded mahine. This gives an idea of the relative omplexity of the interations. Eahinteration also involves requests for multiple embedded images, eah image orresponding to anitem in the inventory. Exept for Order Inquiry, all interations query the database server.Table 2 lists the database tables and their sizes in our test-bed. The sizes inlude that ofthe neessary indexes on eah of the tables to make the queries in the interations eÆient. Theinventory images, totaling 18.3 GB of data, are resident on eah of the Apahe servers.We implement eah of the interations as a separate PHP sript. We also implemented a lient-browser emulator. A session is a sequene of interations for the same ustomer. For eah ustomersession, the lient emulator opens a persistent HTTP onnetion to the Web server and loses itat the end of the session. Eah emulated lient waits for a ertain think time before initiating thenext interation. The session time and think time are generated from a random distribution withthe spei�ed mean. We use 100 lients, a mean session length time of 2 minutes, and a mean thinktime of 1 seond for all our experiments.7.1 Hardware PlatformWe use the same hardware for all mahines running the emulated-lient, web-servers, Dispatherand database engines. Eah one of them has an AMD Athlon 800Mhz proessor running FreeBSD4.0, 256MB SDRAM, and a 30G ATA-66 disk drive. They are all onneted through 100MBpsEthernet LAN.
7
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Web Interation Browsing Shopping Ordering Time (ms)Browse 95% 80% 50%Home 29.00% 16.00% 9.12% 26New Produts 11.00% 5.00% 0.46% 241Best Sellers 11.00% 5.00% 0.46% 701Produt Detail 21.00% 17.00% 12.35% 25Searh Request 12.00% 20.00% 14.53% 22Searh Results 11.00% 17.00% 13.08% 288Order 5% 20% 50%Shopping Cart 2.00% 11.60% 13.53% 37Customer Registration 0.82% 3.00% 12.86% 19Buy Request 0.75% 2.60% 12.73% 47Buy Con�rm 0.69% 10.20% 10.18% 40Order Inquiry 0.30% 0.75% 0.25% 3Order Display 0.25% 0.66% 0.22% 77Admin Request 0.10% 0.10% 0.12% 21Admin Con�rm 0.09% 0.09% 0.11% 4869Table 1: Web Interation Mix and CharateristisTable Name Number of Rows Table Size (KB)Customer 2,880,000 1341139Address 5,760,000 861567Orders 2,592,000 269090Order Line 7,782,313 988555CC XACTS 2,592,000 252800Item 100,000 63680Author 25,000 9540Country 92 8Table 2: Database Table Charateristis7.2 SoftwareWe use Apahe v.1.3.22 [1℄ for our web-server, on�gured with the PHP v.4.0.1 module [16℄ provid-ing server-side sripting for generating dynami ontent. We limit the maximum number of Apaheproesses to 100, the same value as the number of lients. We use MySQL v.3.23.43-max [13℄ asour database server.8 Experimental Results8.1 Baseline ExperimentWe run the TPC-W benhmark with one Web server mahine and one database engine mahine. Weobtain 5.1, 8.5, and 20.4 interations per seond for the browsing, shopping and ordering workloadmix, respetively. A dispather is not neessary in this on�guration. There is no measurabledi�erene in terms of throughput, however, when we interpose the dispather between the Web8
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Figure 5: Throughput saling for the browsing, shopping and ordering mixesserver and the database mahine.More importantly, �gure 4 presents the CPU utilization on the Web server mahine and thedatabase server mahine. For all the three interation mixes, the database server is the bottlenek.For the ordering mix, the CPU utilization on the database server mahine does not reah 100%.We attribute this to lok waiting times in this write-heavy workload.All further results are obtained with 1 to 8 database server mahines. We use a number of Webserver mahines suÆient for the Web server stage not to be the bottlenek. The largest numberof Web server mahines used for any experiment was 3. The dispather is never a bottlenek forthese luster sizes.8.2 Overall Saling ResultsIn this setion we disuss overall results for the best ombination of load balaning and sheduling.We disuss the relative merits of various strategies in more detail in Setion 8.3. The top graph inFigure 5 shows the overall saling results for the best strategy (asynhronous repliation) for eahof the three workload mixes. In the x-axis we have the number of database mahines and in they-axis the number of interations per seond.The browsing and the shopping workload mixes sale very well. We get almost linear improve-ment with eah added database mahine up to 8 mahines, where we get a fator of 7 improvementfor the browsing mix and a fator of 6 for the shopping mix. The good results of the shopping mixare espeially enouraging as this mix is onsidered to be the most representative of e-ommere siteoperation. The performane of the browsing mix reets a read-heavy workload with little synhro-nization. Its good performane is therefore not surprising. The ordering workload mix performs9
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Figure 6: Throughput for asynhronous versus synhronous repliation as a funtion of thresholdvalue for SFQ and SELF for shopping mixless well. It sales linearly until 4 databases mahines, with an improvement of almost a fator of 3at 4 mahines, but there is only a 10% further improvement for eight mahines. We attribute thisto a lak of parallelism in the workload. About 50% of this mix onsists of update queries, whihare exeuted on all replias and therefore o�er no room for improvement. Fortunately, this mix isonsidered less representative of the normal operation of e-ommere sites than the shopping mix.8.3 Comparison of Load Balaning and Sheduling MethodsAsynhronous repliation is the method of hoie. Figure 5 also ontains the best result for anystrategy that does not inlude asynhronous repliation. Clearly, the results are inferior for allmixes. Furthermore, the bottom graphs in Figure 5 presents the saling results for a shortest queue�rst (SQF) distribution strategy with synhronous sheduling of queries, no load limiting, and noattention paid to onits. The results are poor for all workloads.For asynhronous repliation, the hoie between SQF, SELF, or LARD, and the exat valueof the threshold matter muh less in terms of overall throughput when ompared to the di�erenebetween synhronous and asynhronous repliation. In Figure 6, for instane, we present the 8-mahine throughput for the shopping mix for asynhronous versus synhronous repliation for SQFand SELF as a funtion of the threshold used. Unlike synhronous, the resulting throughput forasynhronous is almost independent of the hoie between SQF and SELF for a large range ofthresholds.8.4 Detailed ComparisonAs a �nal omparison, we present the results for various ombinations of load balaning and shedul-ing strategies for 8 proessors for eah workload mix in Figures 7 to 9.The graphs for all the three mixes show: all load balaning versions with Basi Synhronization(the �rst three bars), Conit Avoidane (the bars in the middle) and Asynhronous Sheduling(the last three bars). All the Basi Synhronization versions assign queries immediately, whileall the other versions an aumulate queries. We want to separate the gains through ConitAvoidane and Load Limiting sine they have the same net e�et: reduing database ongestionand inreasing the deision window for the load balaner. To show the gains obtained by eah10
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Figure 7: Throughput omparisons for the TPC-W browsing mix
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Figure 8: Throughput omparisons for the TPC-W shopping mix
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Figure 10: The overhead of providing fault tolerane and data availabilityindividually, we present the Conit Avoidane results with and without Load Limiting. For allthe bars where a limit is shown, we use the best experimentally determined limit for SQF andSELF. In partiular, the best limit value for SQF was measured through sensitivity experimentsas: 1 for the browsing mix, 2 for the shopping mix and 10 for the ordering mix. A 1 seond loadlimit for SELF gives good results for all protools and mixes. In all LARD experiments, we use aload measure in terms of exeution time, with the same overload threshold of 1 seond as in SELF.For the browsing mix, we see that Load Limiting is an important fator, with sheduling forsynhronization a seond order improvement. In this workload, synhronization is rare, whilefrequent heavy-weight reads ause the database to be ongested.For the other two mixes, sheduling for synhronization plays the most important role. Inthe shopping mix, where there is still database ongestion due to heavyweight reads, and onitsare relatively frequent, avoiding onits helps. All the asynhronous versions further improveperformane by a signi�ant fration ompared to the best synhronous version.In the ordering mix, the database is not ongested due to the lightweight workload with ahigh fration of writes, thus both tehniques that redue ongestion (Conit Avoidane and LoadLimiting) are of little help. On the other hand, the high frequeny of synhronizations explains thefator of 2 impat on performane of all Asynhronous shedulers.In all the LARD ombinations, loality does not bring any bene�ts ompared to SELF. This ismainly due to the ompute-intensive nature of the read queries. Furthermore, most read queriesaess only a few tables (e.g. item, author, order line).In Figure 10 we show that the overhead for fault tolerane and data availability is negligible forthe browsing and shopping mixes and around 25% for the ordering mix. The explanation is thatread-only sripts are not transational in TPC-W, and thus do not inur overhead, while read-writesripts are lightweight and transational (inur overhead).8.5 SummaryFor the interation mixes that ontain a non-trivial fration of write-type queries suh as shoppingand ordering, asynhronous sheduling gives the relatively largest gains. Limiting mahine load isstill important for read-heavy workloads suh as the browsing mix. However, using a load measurein terms of exeution length allows for relative independene on the exat value of this limit. Inontrast, we annot hoose any one limit in terms of number of outstanding queries that will givegood performane for all three mixes.
12
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9 Related WorkCurrent high-volume Web servers suh as the oÆial Web server used for the Olympi games [5, 6℄and IBM's WebSphere, Commere Edition [12℄ rely on expensive superomputers for saling tohigh request volumes. Our solution provides salability using ommodity hardware and softwarewith no modi�ations.Our LARD sheme is similar to the loality-aware request distribution proposed by Pai etal. [15℄. for stati ontent. They show that for a web engine serving stati ontent, LARD out-performs both pure loality-based and weighted round-robin shemes. In ontrast, we show that,when the web server is targeted at serving dynami ontent, sheduling requests for reduing syn-hronization lateny is more important than distributing requests for loality.Zhang et al. [19℄ have previously extended LARD to dynami ontent in their HACC projet.Their study, however, is limited to read-only ontent workloads. In a more general dynami ontentweb server, repliation implies the need for onsisteny maintenane. In this paper, we develop andevaluate sheduling tehniques that take into aount the interplay between load balaning andonsisteny maintenane.Our load balaner is also related to load balaning shemes used in luster database systems [9℄,although the approahes are orthogonal. The traditional approah to load balaning in lusterdatabase systems has been that data plaement drives the load balaning. We use repliationinstead of delustering for data plaement. Previously, repliation has been mainly used for faulttolerane and data availability [2, 10℄.Neptune [17℄ adopts a primary-opy approah to providind onsisteny in a partitioned servieluster. However, their salability study is limited to Web appliations with loose onsistenysuh as bulletin boards and aution sites, where saling is easier to ahieve. They do not addresse-ommere workloads or other Web appliations with relatively strong onsisteny requirements.10 ConlusionIn this paper, we investigate how an e-ommere site an be saled up from a single mahine runninga Web server and a database to a luster of Web server mahines and database engine mahines.We avoid modi�ations to the Web server, the database engine, or the sripts for aessing dynamiontent. We also assume software platforms in ommon use: Apahe web servers, mySQL databaseengine, and the PHP sripting language. As a result, our saling methods are appliable withoutburdensome development or reon�guration of the site. We use the various workload mixes ofthe TPC-W benhmark to evaluate overall saling behavior and the ontribution of various loadbalaning and sheduling algorithms to good saling behavior.We �nd that a luster arhiteture sales well for the most representative of the TPC-W work-load mixes, the shopping mix, and also for the browsing mix. The write-heavy ordering mix salesless well. The key ingredient of a salable load balaning and sheduling poliy is asynhronousrepliation, in whih writes omplete and are returned to the Web server as soon as a single in-stane of the write ompletes at one of the database engines. The atual hoie of load balaningstrategy is less important. Somewhat better results, in terms of response times and insensitivityto threshold values, are obtained if query exeution time is taken into aount for load balaning.Loality-based load balaning poliies, found very pro�table for stati Web workloads, o�er littleadvantage.
13
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